If it's not what You are looking for type in the equation solver your own equation and let us solve it.
98x^2+7x-100=0
a = 98; b = 7; c = -100;
Δ = b2-4ac
Δ = 72-4·98·(-100)
Δ = 39249
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{39249}=\sqrt{441*89}=\sqrt{441}*\sqrt{89}=21\sqrt{89}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-21\sqrt{89}}{2*98}=\frac{-7-21\sqrt{89}}{196} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+21\sqrt{89}}{2*98}=\frac{-7+21\sqrt{89}}{196} $
| f+3.28/2.25=f−4.2 | | 9x−1=80 | | 12(1.5x+2)=14(x+10.5) | | 7x-10=17-2x | | 42+x=125 | | x+38=2(x+8) | | 1x-12x=12 | | u-3=42 | | x=x(26-2x)(18-2x) | | (8)^(3x)=2.6 | | x+38=2x+16 | | -15=-8z+7 | | x^2+7x-54=36 | | X+2x-4=46 | | 6+6x=2x+20 | | 10+8q=96 | | 5+7x-21=-23 | | x^2-2x=3x+108=180 | | 10+5x=25+2x | | 30=9x+60-15x | | 3x-5(x-5)=-6+5x+3 | | 8x+13-3-3x=35 | | x=16+1/3 | | w+11=-13 | | 84.6=9(m+2.3 | | 6n-12-2n=-5n+15 | | Y=8x2-18x | | (x-4)(2x+1)=26 | | 40.45=2l+85.5(2l-4) | | x+2x-3=46 | | 7(h+3=6)(h-3) | | 7^{1-x}=4^{3x+1} |